DBA > Articles

Tuning an IBM DB2 for z/OS Application: CPU Constraints

By: Lockwood Lyon
To read more DBA articles, visit http://dba.fyicenter.com/article/

When involved in application performance tuning, the database administrator usually concentrates on reducing elapsed times or I/O waits. Too often, the CPU is forgotten, perhaps because of recent advances in CPU speeds, parallelism, and specialty processors.

Regrettably, disregarding CPU costs can lead to resource contention, wasted CPU cycles, and more frequent hardware upgrades. The DBA should consider CPU usage during application tuning opportunities, and attempt to balance resource usages (CPU, memory, I/O, and so forth) across the system to minimize resource constraints.

Good or bad tuning?
Situation #1: After analysis of accounting records, a DBA determines that the RunStats utility is responsible for almost 2% of the CPU used in one LPAR. When 90% of these jobs are removed, weekly CPU usage is significantly reduced.

Situation #2: The DBA reviews statistics for a long-running application. It contains an SQL statement that joins two partitioned tables; however, the access paths do not take advantage of parallelism. By implementing parallelism, the DBA cuts total execution time of the job from two hours to two minutes.

Situation #3: A popular online transaction typically takes several minutes to execute. After some analysis, the DBA creates three new indexes on tables that are joined in the application. Response time for the transaction now averages less than a second.

What do these situations have in common? All of them may be examples of DB2 CPU tuning failures! While on the surface they may appear to be success stories, the deeper reality was this: in each case, the DBA made a tuning decision based on a local symptom or problem without considering the CPU implications.

How tuning decisions affect CPU usage
In the first scenario, the DBA eliminated many RunStats jobs. For high-volume critical applications, up-to-date statistics may be essential in order for the DB2 optimizer to choose efficient access paths for SQL statements. This is especially important if distributed applications are using dynamic SQL.

A better choice would have been to collect access path information and data volatility statistics to determine which stats are essential. Typically, these are index clustering and key distribution statistics. So, rather than removing RunStats jobs, the correct procedure would probably involve re-coding parameters to focus on gathering critical statistics.

In the second scenario, the DBA greatly reduced one application's elapsed time; however, during job execution it is possible that overall system CPU utilization will be much higher. This happens because the CPU usage that was once spread over two hours is now compressed into a much shorter interval.

This has the effect of "spiking" CPU usage for that period. This application now runs much faster, but at the expense of every other application that requires CPU.

In the third scenario, the DBA added indexes to tables without considering the overall impact on the system. Other applications that insert or delete rows now must insert or delete index entries. Daily table loads now run longer as well due to the need for sorting entries for the new indexes. All this adds up to increased CPU usage.

Let's take a look at a tuning opportunity where CPU usage was the primary consideration. Case Study: CPU starvation

This was a non-data sharing environment in which the total machine CPU time hovered near 100% busy during the production day. The DBAs analyzed the DB2PM Accounting Detail reports to determine whether excessive CPU could be attributed to DB2, to certain applications, to access paths for certain objects, or to something else.

For application CPU resource consumption, the DBAs developed a "CPU time per SQL statement" measurement. They used the In-DB2 TCB time from the Accounting Detail report as their CPU measure, and created a weighted average measure of the number of SQL statements executed by the application.

Their exact formula is not important here. (For example, they researched the average CPU usage required for various DML statements based on the DB2 V8 Performance Topics Redbook, and then modified this to suit their applications.) What is important is that they created a generic measurement for application CPU usage that they could then use to find "CPU hog" programs.

For each application, they divided the In-DB2 TCB time by the total number of SQL statements executed. This resulted in numbers in the range of 0.1 to 1.0 milliseconds (msec) per statement. Those applications scoring higher than 1.0 msec were considered to be high CPU consumers.

The next step was to determine what other resources were available. In this case, real memory on the box where DB2 was running was not 100% utilized. In consultation with the systems programming staff, the DBAs were able to get an additional gigabyte of real memory dedicated to DB2. This was implemented in the form of several dataspaces, and several of the most heavily-used tables were allocated to virtual pools in dataspaces.

The result: an overall decrease in CPU utilization, due to fewer required physical I/Os to access the critical tables. The tradeoff: additional memory usage.

Next, the DBA team analyzed the accounting detail report looking for DB2 subsystem issues. They noticed that the In-DB2 Not Accounted For Time was relatively high (about five percent of In-DB2 Elapsed Time). This indicated that the DB2 address space was waiting for CPU dispatching. This happens most often when the CPU is extremely busy, as DB2 must wait for a CPU to do some synchronous tasks such as log writes. If DB2 must wait for a CPU, then the application waits for DB2.

In this case, reduction of overall CPU time was called for, as this problem tended to occur during times of high CPU busy. The DBA team reviewed their overall resource profile and determined that they had some unused DASD resources; in addition, they could afford to sacrifice throughput for some low-priority applications. They then implemented the following changes:

* Many small and medium-sized tables (under 100,000 rows) that were defined with data compression (COMPRESS YES) were re-defined to remove the compression option. They also concurrently increased the sizes of some of the virtual pools. This increased DASD usage somewhat, and also caused a slight increase in CPU due to the additional I/Os required by SQL statements that accessed large numbers of rows. However, there was a net decrease in CPU time by forgoing compression and decompression of rows for those tables.

* Many distributed applications (i.e., those not originating in z/OS) were invoking DB2 stored procedures. In many cases, these stored procedures were being used to execute a single SQL statement that returned one row. The overhead for invoking a stored procedure is several thousand machine instructions; so, for some highly-used stored procedures the DBAs had developers use dynamic SQL instead. In addition, they enlarged the dynamic statement caches. This caused a slight increase in CPU time as dynamic SQL needed to be bound (unless it was in the cache); however, there was a net reduction in overall CPU usage as hundreds of thousands of stored procedure invocations were removed.

* The frequency of DB2 system checkpoints was changed from every 5 minutes to every 12 minutes. This reduced CPU usage somewhat, as DB2 did fewer

Full article...

Other Related Articles

... to read more DBA articles, visit http://dba.fyicenter.com/article/