DBA > Interview Resource

MySQL and SQL

Part:   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 

(Continued from previous part...)

Getting Maximum Performance from MySQL

Optimization is a complicated task because it ultimately requires understanding of the whole system. While it may be possible to do some local optimizations with small knowledge of your system/application, the more optimal you want your system to become the more you will have to know about it.
So this chapter will try to explain and give some examples of different ways to optimize MySQL. But remember that there are always some (increasingly harder) additional ways to make the system even faster.


MySQL - Optimization Overview

The most important part for getting a system fast is of course the basic design. You also need to know what kinds of things your system will be doing, and what your bottlenecks are.

The most common bottlenecks are:

Disk seeks. It takes time for the disk to find a piece of data. With modern disks in 1999, the mean time for this is usually lower than 10ms, so we can in theory do about 1000 seeks a second. This time improves slowly with new disks and is very hard to optimize for a single table. The way to optimize this is to spread the data on more than one disk. Disk reading/writing. When the disk is at the correct position we need to read the data. With modern disks in 1999, one disk delivers something like 10-20Mb/s. This is easier to optimize than seeks because you can read in parallel from multiple disks.
CPU cycles. When we have the data in main memory (or if it already were there) we need to process it to get to our result. Having small tables compared to the memory is the most common limiting factor. But then, with small tables speed is usually not the problem.
Memory bandwidth. When the CPU needs more data than can fit in the CPU cache the main memory bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one should be aware of it.


MySQL - System/Compile Time and Startup Parameter Tuning

We start with the system level things since some of these decisions have to be made very early. In other cases a fast look at this part may suffice because it not that important for the big gains. However, it is always nice to have a feeling about how much one could gain by changing things at this level.

The default OS to use is really important! To get the most use of multiple CPU machines one should use Solaris (because the threads works really nice) or Linux (because the 2.2 kernel has really good SMP support). Also on 32-bit machines Linux has a 2G file size limit by default. Hopefully this will be fixed soon when new filesystems are released (XFS/Reiserfs). If you have a desperate need for files bigger than 2G on Linux-intel 32 bit, you should get the LFS patch for the ext2 file system.

Because we have not run MySQL in production on that many platforms, we advice you to test your intended platform before choosing it, if possible.

Other tips:

If you have enough RAM, you could remove all swap devices. Some operating systems will use a swap device in some contexts even if you have free memory.
Use the --skip-locking MySQL option to avoid external locking. Note that this will not impact MySQL's functionality as long as you only run one server. Just remember to take down the server (or lock relevant parts) before you run myisamchk. On some system this switch is mandatory because the external locking does not work in any case. The --skip-locking option is on by default when compiling with MIT-pthreads, because flock() isn't fully supported by MIT-pthreads on all platforms. It's also on default for Linux as Linux file locking are not yet safe. The only case when you can't use --skip-locking is if you run multiple MySQL servers (not clients) on the same data, or run myisamchk on the table without first flushing and locking the mysqld server tables first. You can still use LOCK TABLES/UNLOCK TABLES even if you are using --skip-locking 12.2.1 How Compiling and Linking Affects the Speed of MySQL
Most of the following tests are done on Linux with the MySQL benchmarks, but they should give some indication for other operating systems and workloads.

You get the fastest executable when you link with -static.

On Linux, you will get the fastest code when compiling with pgcc and -O6. To compile `sql_yacc.cc' with these options, you need about 200M memory because gcc/pgcc needs a lot of memory to make all functions inline. You should also set CXX=gcc when configuring MySQL to avoid inclusion of the libstdc++ library (it is not needed). Note that with some versions of pgcc, the resulting code will only run on true Pentium processors, even if you use the compiler option that you want the resulting code to be working on all x586 type processors (like AMD).

By just using a better compiler and/or better compiler options you can get a 10-30 % speed increase in your application. This is particularly important if you compile the SQL server yourself!

We have tested both the Cygnus CodeFusion and Fujitsu compilers, but when we tested them, neither was sufficiently bug free to allow MySQL to be compiled with optimizations on.

When you compile MySQL you should only include support for the character sets that you are going to use. (Option --with-charset=xxx). The standard MySQL binary distributions are compiled with support for all character sets.

Here is a list of some mesurements that we have done:

If you use pgcc and compile everything with -O6, the mysqld server is 1% faster than with gcc 2.95.2. If you link dynamically (without -static), the result is 13% slower on Linux. Note that you still can use a dynamic linked MySQL library. It is only the server that is critical for performance.
If you connect using TCP/IP rather than Unix sockets, the result is 7.5% slower on the same computer. (If you are connection to localhost, MySQL will, by default, use sockets).
If you compile with --with-debug=full, then you will loose 20 % for most queries, but some queries may take substantially longer (The MySQL benchmarks ran 35 % slower) If you use --with-debug, then you will only loose 15 %. On a Sun SPARCstation 20, SunPro C++ 4.2 is 5 % faster than gcc 2.95.2.
Compiling with gcc 2.95.2 for ultrasparc with the option -mcpu=v8 -Wa,-xarch=v8plusa gives 4 % more performance. On Solaris 2.5.1, MIT-pthreads is 8-12% slower than Solaris native threads on a single processor. With more load/CPUs the difference should get bigger.
Running with --log-bin makes [MySQL 1 % slower.
Compiling without frame pointers -fomit-frame-pointer with gcc makes MySQL 1 % faster.
The MySQL-Linux distribution provided by MySQL AB used to be compiled with pgcc, but we had to go back to regular gcc because of a bug in pgcc that would generate the code that does not run on AMD. We will continue using gcc until that bug is resolved. In the meantime, if you have a non-AMD machine, you can get a faster binary by compiling with pgcc. The standard MySqL Linux binary is linked statically to get it faster and more portable.

(Continued on next part...)

Part:   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45